

Cosmin Deaconu

University of Chicago / Kavli Institute for Cosmological Physics

Topics in Cosmic Neutrinos Workshop Fermilab, October 11, 2019

The goal of radio detection: Ultra-High-Energy u's (\gtrsim EeV)

Why? Multimessenger astrophysics!

Neutrinos are ideal messengers since mostly do not interact on way here **Expected flux is very low, so need a big detector!**

Why? (for particle physicists): Most energetic neutrinos we can play with!

• Verify Standard Model $\nu-N$ cross-section at a new energy scale by using Earth as a filter.

Phys. Rev. D 83, 113009

- BSM models could enhance or suppress cross-sections at high energies
- Can also probe flavor ratios, Lorentz invariance, sterile neutrinos, exotic DM, etc.

How? Use radio emission from Askaryan effect in ice

- Askaryan (charge-excess) radiation: Fast-moving charge density in dielectric \rightarrow coherent emission ($\propto E^2$) at long (radio) wavelengths
 - ► Charge excess from processes (positron annihilation; Bhabha, Moller and Compton scattering) involving electrons in material
 - \blacktriangleright At wavelengths larger than $\mathcal{O}(\text{projected lateral width})$, don't resolve individual charges
- Confirmed in ice with SLAC beam test (Phys.Rev.Lett.99:171101,2007).
- ullet Radio attenuation length in ice is $\sim 1~{\rm km}$

Some ice-based Askaryan ν experiments

ANITA*

Antennas on a high-altitude balloon over Antarctica

ARA*

Antennas buried in ice near the South Pole

ARIANNA

Near surface antennas on Ross Ice Shelf

New Greenland Experiment*

New project in Greenland!

^{*}denotes an experiment I work on.

Another method: Detect upward-going showers from $u_{ au}$

- Extensive air showers (EAS) also produce radio signal (mostly from charge-separation by Earth's magnetic field, although also an Askaryan component)
- Technique widely used to measure air showers from cosmic rays (e.g. AERA, LOFAR).
- But, a ν_{τ} interacting in the Earth can produce a τ that escapes the Earth which can then decay in the atmosphere to produce an apparent upward-going air shower.

Some radio experiments searching for $\nu_{ au}$ channel

ANITA*

Antennas on a high-altitude balloon over Antarctica

BEACON*

Antenna array in White Mountains of California

GRAND

(Eventually)
thousands of
antennas in the Tien
Shan Mountains of
China

TAROGE

Antennas on mountains in Antarctica.

^{*}denotes an experiment I work on.

ANITA Collaboration

ANtarctic Impulsive Transient Antenna

12 institutes, 3 countries, 4 continents

ANITA experiment concept

ANITA experiment concept

ANITA experiment concept

The cosmic-ray air shower signal

- Earth's magnetic field separates charges in EASs, produces radio emission
 - ▶ "Direct" ~horizontal CR's: miss ground.
 - "Reflected" down-going CR's: point to ground, opposite polarity

The ν_{τ} air shower signal

- Angle consistent with reflected UHECR, but polarity of direct
- ullet Could be produced by a $u_{ au}$ -induced au which escapes atmosphere and decays, producing shower. Or by exotics.

The ANITA instrument

- 0.18-1.2 GHz signal split into digitizer and trigger path
 - ▶ Tunnel diode L0 trigger. combinatorics take $\mathcal{O}(10^{5-6}$ Hz) singles rate $\rightarrow \mathcal{O}(50$ Hz) global rate
 - ▶ Switched capacitor array digitizers, \sim 2.6 GHz $\mathcal{O}(100 \text{ ns})$.

Timeline of completed ANITA flights

ANITA-Lite	ANITA-I	ANITA-II	ANITA-III	ANITA-IV
2003-2004	2006-2007	2008-2009	2014-2015	2016
18 days, 2	35 days, 32	30 days, 40	22 days, 48	29 days, 48
antennas	antennas	antennas	antennas	antennas
Piggy-back on TIGER	Multi-band, Pol-independent trigger	Multi-band, VPol trigger	Full-band HPol + VPol trigger	Full-band, Lin-Pol trigger

ANITA-III (2014-2015) and ANITA-IV (2016)

ANITA-III:

- ▶ Independent H + V trigger
- ▶ ~70 million events recorded
- Complications from new military comm satellites → loss of volume, significant improvements to data analysis required.

ANITA-IV:

- ► Tunable notch filters to reduce CW, increase livetime
- New trigger uses phase shifters to convert H+V to LCP and RCP; requires coincidence of LCP and RCP, ensuring linear polarization
- Lower noise figure front-end design
- ▶ ~100 million events recorded

Cosmin Deaconu (UChicago/KICP)

Radio-Detection of UHE ν s

Signals

Askaryan emission from ν 's

- Impulsive signal (few ns)
- Broadband
- Linearly polarized; mostly vertically-polarized (VPoI) due to interaction geometry (Earth opaque to EeV \(\nu\)'s) and transmission through air-ice boundary (Fresnel coefficients).

Signals

Askaryan emission from ν 's

- Impulsive signal (few ns)
- Broadband
- Linearly polarized; mostly vertically-polarized (VPoI) due to interaction geometry (Earth opaque to EeV \(\nu\)'s) and transmission through air-ice boundary (Fresnel coefficients).

Geomagnetic emission from EAS

- Impulsive signal
- More low-frequency weighted
- Linearly polarized; due to Earth's magnetic field, primary horizontally-polarized (HPol)

Signals and backgrounds (fake ν s)

Askaryan emission from ν 's

- Impulsive signal (few ns)
- Broadband
- Linearly polarized; mostly vertically-polarized (VPoI) due to interaction geometry (Earth opaque to EeV \(\nu\)'s) and transmission through air-ice boundary (Fresnel coefficients).

Geomagnetic emission from EAS

- Impulsive signal
- More low-frequency weighted
- Linearly polarized; due to Earth's magnetic field, primary horizontally-polarized (HPol)

Continuous wave (CW) signals

Anthropogenic narrow-band signals (from satellites and bases) contaminate most data so must be filtered.

RFI from payload ("payload blasts")

Timing between antennas not plane wave-y.

Thermal noise

Incoherent random noise, that sometimes by chance looks impulsive (but not correlated between antennas).

Impulsive anthropogenic emission

Transformers, engines, etc. produce broadband impulsive emission that can mimic ν 's. Use spatial clustering of events passing first-round cuts to remove. **Dominant background**.

Diffuse askaryan ν results

- ANITA-III: (Phys.Rev. D98 (2018) no.2, 022001) Most sensitive search found one candidate on a background of $0.7^{+0.5}_{-0.3}$ events.
- ANITA-IV: (Phys.Rev. D99 (2019) no.12, 122001)
 Most sensitive search found one candidate on a background of 0.64^{+0.69}_{-0.45} events.

Air shower searches

- Due to potential for upgoing showers, searches performed blind to polarity.
- To be an air shower candidate, in addition to being isolated, impulsive and primarily HPol, must:
 - Match expected air shower shape (which we know, since we've detected EAS before)
 - Have polarization angle consistent with local magnetic field
- O(20-30) EAS candidates identified in each of ANITA-III and ANITA-IV.

Upward shower searches

Top-Left: Anomalous ANITA-III event Top-Right, Bottom-Left: Direct UHECR candidates Bottom-Right: A reflected UHECR candidate

- An anomalous event found in ANITA-III (Phys.Rev.Lett. 121 (2018) no.16, 161102), similar to event found in ANITA-I.
- Mostly HPol, matches UHECR template, polarity consistent with direct cosmic ray event, but clearly points to ice, so consistent with an upward going air shower.
- "Looks like" a $\nu_{\tau} \rightarrow \tau$ candidate, but chord length through Earth in tension with SM cross-section and flux in tension with Auger and IceCube limits; a number of other explanations have been proposed.

Ongoing ANITA searches

ANITA-IV upward air shower search (i.e. polarity unblinding)

- Holdup is calibration of impulse response, which is more complicated in ANITA-IV due to the programmable notch filters and changes to frontend design.
- Because different filter configurations during flight, must take responses into account when comparing polarity! Lots of work on deconvolution.

Searches for neutrinos in coincidence with sources ongoing in ANITA-III and ANITA-IV

- Consider e.g. putative IceCube sources, flaring blazars, and GRB's
- By constraining time and direction, lower backgrounds and analysis threshold
- Using polarization information, simulations preliminarily indicate RA and dec resolution of a few degrees.
- Intriguingly, the IceCube "neutrino burst" from TXS 0506+056 occured during ANITA-III flight

Future of ANITA: Payload for Ultrahigh Energy Observations (PUEO)

PUEO

pueo

- Additional antennas (120 instead of 48), but with a higher cutoff frequency (300 vs. 180 MHz).
- Beamforming trigger using few-bit streaming digitizers to lower trigger threshold
- 24 antennas canted down to fill gap in ANITA elevation coverage (and further investigate steep air shower events)
- Improved digitizers with better response at high frequencies
- Up to 10X more sensitive than ANITA-IV

Projected PUEO sensitivity:

Conclusions

- Radio detectors can be used to search for ultra-high energy neutrinos.
- ANITA I-IV combined set the best limits on UHE ν flux above $10^{19.5}$ eV.
- Many EASs detected in ANITA-III and ANITA-IV.
- One of the ANITA-III EAS has anomalous polarity, consistent with an upward-going air shower.
- Stay tuned for ANITA-IV polarity unblinding and ANITA-III and ANITA-IV source searches!
- The proposed PUEO will have substantial hardware and sensitivity improvements.

Thank You!

Questions?

Backup Slides

(Some) upward shower explanations

ν_{τ} -induced EAS

- Would produce upward-going EAS
- Chord through Earth not compatible with SM cross-section
- Tension with IceCube and Auger results

Funny reflection of UHECR EAS

- + Apparent upward-going EAS shower
- Hard to invert polarity but maintain coherence
- Would likely have seen effect in data from HiCal (trailing balloon with HV pulser)

Anthropogenic Background

- + No physics to explain
- We consider it unlikely

Transition Radiation from UHECR EAS

- Could produce impulsive emission with right polarization
- Work needed to see if can mimic signal

Exotics (e.g. heavy ν DM, sterile ν)

- + Could produce upward-going EAS
- New physics
- Tension with IceCube and Auger

Not geomagnetic, instead Askaryan

- + Could produce impulsive emission
- + Not in tension with other experiments
- If from ν , observed polarization unlikely
 - If from some exotic, need new physics.

Sketch of analysis

Three independent blind ν analyses for ANITA-III, two for ANITA-IV. Basic flow:

- Filter waveforms (reduce CW) and remove events failing quality cuts
- Form correlation map, where we calculate channel cross-correlations with different direction assumptions
- From peaks of correlation map, form coherent waveforms, generate features (e.g. impulsivity, linear polarization fraction) used to cut out thermal noise
- Use pointing information to point to continent; select regions with little anthropogenic activity.

The Raw Data (a Calibration Pulse, Not a ν)

- 48
 dual-polarization
 horn antennas
- Sampled at \approx 2.6 GHz's
- 100 ns per event
- 50 Hz global trigger rate
- O(10⁷) RF triggers per flight (ANITA-III and IV)

Ballooning in Antarctica

- Antarctica not only has abundant ice but also hosts the NASA long duration balloon program!
- At float (35-40 km), balloon expands to size of football stadium.

Using Spatial Information to Remove Anthropogenics

- We assume anthropogenic emission is spatially clustered on the continent, so we only consider isolated events as candidates.
- For each signal-like event, we measure a direction with some pointing resolution.
- One example clustering algorithm:
 - Project all interesting events to continent and accumulate to form a "clustering map." Use to compute overlap integral of each event with all other events.
 - Isolated events will have overlap integrals close to zero
- Other methods to tackle anthropogenics include pairwise event clustering or a binned continent analysis.

Ice considerations: Surface vs. deep antennas

- Near-surface antennas are easier to deploy, and more flexible (can use higher gain antennas, same antenna for all polarizations.)
- But top layer of ice ("firn") has density gradient → index of refraction gradient so not all signals reach surface
- Deep antennas see more volume, but drilling adds to cost and antenna options limited by borehole size
- Another consequence of firn is existence of with multiple paths ("direct" and "refracted") which allow for more precise vertexing

BEACON concept

- Phased array trigger on top of a mountain
- Current prototype running in White Mountains of California

New antennas deployed a week ago!

S. Wissel

New Greenland Experiment

- Contructing a new radio neutrino array near Summit Station Greenland
- Preliminary design includes 100m deep phased antenna array and surface antennas for CR veto and enhanced reconstruction
- Deploying as soon as 2020!

A. Nelles

9/13

ANITA-III Block Diagram

ANITA-IV Block Diagram

ANITA-III Trigger

ANITA-IV Trigger

